# L0 Hybrid

• Two hybrids stuffed with version 1 (old) SVX4.



Both work fine.

# L0 Hybrid (cont'd)



- Minor problem: FE mode, BE mode, and calsr are misaligned between 1<sup>st</sup> and 2<sup>nd</sup> chip.
- 1st chip calsr  $\rightarrow$  2nd chip FE mode
- 1st chip FE mode  $\rightarrow$  2nd chip BE mode
- 1st chip BE mode  $\rightarrow$  2nd chip calsr
- These are temporarily fixed by the wire bonding scheme.

@ Etch layer 2

#### Revised ANSYS calculation

• ANSYS calculation:

91μm pitch, 16μm trace width, 8μm trace height, and 70μm Kapton thickness (was 50μm).



#### LCR measurement

- Neighbor to neighbor capacitance:
  7.5pF (single cable) → 8.5pF (top cable of the two stacked cable).
- 13% increase of capacitance is in good agreement with the ANSYS calculation.
- Frank also sees the noise increase for the laminated cable stack.

### Short look at capacitances of cable assembly

- 0.34 pF/cm averaged to both neighbors
- add 0.17 pF/cm to lower cable
- total cap: 0.51 pF/cm for cable stack plus ~10% for higher orders
- ANSYS calculation by Kazu: 0.47 pF/cm for 200um spacer with dielectric constant of 2.0 (we have ~2.5)





# New module with 10 chip hybrid

• Very useful for the cable studies.

BW=6





## Checking Gain

• Large capacitive load can change the gain.

ADC counts after pedestal subtraction by cal\_inject

|               | BW=0 | BW=1 | BW=2 | BW=4 | BW=6 | BW=8 | BW=15 |
|---------------|------|------|------|------|------|------|-------|
| No<br>load    | 75.5 | 76.4 | 75.1 | 75.9 | 76.0 | 74.3 | 75.4  |
| cable only    | 77.5 | 77.9 | 76.9 | 74.7 | 71.5 | 71.0 | 58.0  |
| Sensor<br>70V | 76.3 | 73.8 | 71.9 | 65.6 | 64.4 | 64.2 | 46.5  |
| Sensor<br>0V  | 72.5 | 69.0 | 67.3 | 60.4 | 53.8 | 53.8 | 39.0  |



We are using BW=4 for our most of the tests.

## Checking Gain (cont'd)

• Measure both gain by cal\_injection and noise at the same time for the chip bonded only cable. (BW=6)



 No change of the gain. → ADC counts is a good measure for noise.

## Mystery



- Pick-up noise from the ground plane (common mode noise) is observed. ← 500µm separation may be needed.
- We never see the noise increase due to the proximity of eacg cable. ← WHY?????????

#### Laminated vs Non-laminated cable



• No difference can be seen for the cable part.

#### New versions of SVX4

- 11 Wafers in hand. ( $\sim$ 10(?) chips are diced.)
- After wafer probing, large number of chips will be diced, probably in two or three weeks.
- Both version A and B work.
- Both D0 and CDF mode work.
- Pedestal slope across the channels has almost gone, less than one ADC count level. But this depends on the gain. Need gain measurement for quantitative estimates.
- Channel to channel variation significantly reduced.
- Small pipeline cell dependence of pedestal still exists ← can be eliminated by RTPS in principle)
- Faster comparator gives us 10 or 20 ADC counts of pedestal.
- Other basic functions are confirmed to work. (sparsification, RTPS, etc.)